EarthServer Big Earth Data Analytics

Project brief:

Title: EarthServer -European Scalable Earth Science Service Environment

Start date: Sep 1, 2011 Duration: 36 months

5.85 m€ Budget: EU Grant: 4.00 m€ **Mission:** to establish standards-based ad-hoc analytics for Earth science data directly manipulate, analyze, & remix any-size geospatial data

scalable to Petabyte/Exabyte volumes

Approach: integrated query language for all spatio-temporal coverage data

- nD vector + raster + meta data & beyond: image time series, point clouds, trajectories, meshes, (iso) surfaces, solids, TINs, and more
- Server: extending pre-existing rasdaman array database Clients: from smart phone to immersive virtual reality
- Goal: to advance OGC standards-based coverage technology
- OGC Web Coverage Processing Service (WCPS) + W3C XQuery

Contact point:

Prof. Dr. Peter Baumann (Project Coordinator)

Center for Advanced Systems Engineering (CASE)

Jacobs University Germany

Tel: +49-42-200-3178 Fax: +49-42-200-493178

Email: p.baumann @jacobs-university.de

Operational Services for the Earth Science Community

- 1D to 5D data sets (x/y/z/t plus "abstract" dimensions), each 20+ TB
- Ad-hoc filtering and processing, including automated distributed fusion
- front-end to existing archives no new repositories needed

Main Innovation

- Integrated coverage, feature, and metadata queries, including all OGC coverage types
- Transparent gueries over heterogeneous file archives and databases
- Paving the way for Petabyte services: cloud distribution, parallelization, supercomputers
- · Comprehensive OGC standards support for coverage data and services

Advisory board: OGC, ESA, IEEE

OGC Web Coverage Service (WCS) +

EarthServer Big Earth Data Analytics

OGC Standards:

-The Coverage Data Model

A Unifying Exchange and Service Paradigm

ISO 19123 defines coverages, simplifying, as a "space-time varying phenomenon". This abstract definition, which is too high-level to define interoperability concisely, is refined by the OGC GML 3.2.1 Application Schema for Coverages [OGC 09-14r1] to an interoperable re-

presentation of a large class of coverages, including rectified and non-rectified rasters, curvilinear grids, point clouds, TINs, general meshes, trajectories, surfaces,

and solids. as illustrated in the figure to the right.

In EarthServer,

support will be

GML coverage

types.

EarthServer contribution

-The Coverage Service Model

Server-side processing capabilities are of steadily growing importance for geo services. Quality of service can be distinctly improved when shifting from a paradigm of data stewardship to service stewardship. This in particular as the sheer amount of data increasingly prohibits a simple "data shipping" from the server for client-side processing.

The OGC Web Coverage Processing Service (WCPS) standard [OGC 08-068r2] resembles a high-level, declarative query language on nD spatio-temporal geo raster data of unlimited volume. As such, it defines syntax and sem-antics for ad-hoc search, extraction, aggregation, and analysis of coverages containing multi-dimensional sensor, image, or statistics data.

The following example shows the flavor of the WCPS language, see [Baumann, Geoinformatica 2009] for an extensive discussion of concepts, expressive power, and design decisions. The query is "From MODIS scenes M1, M2, and M3, the absolute of the difference between red & nir, in HDF-EOS - but only those where nir exceeds 127 somewhere inside region R":

```
for $c in ( M1, M2, M3 ),
   $r in (R)
where some($c.nir > 127 and $r)
return encode( abs( $c.red - $c.nir ), "hdf-eos" )
```

EarthServer contribution

In EarthServer, WCPS will be extended to the new coverage model and integrated with XQuery.